
Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 1

Bachelor Project Report

Vehicle Remote Optimised Observational Management

 Bachelor Project

Subject: Project Report

Hand in Date: 2014-12-12

Group #16: Andi Michael Degn 127305@VIA.DK ______

 Kenneth René Jensen 166687@VIA.DK ______

Supervisor: Stephan Erbs Korsholm SEK@VIA.DK

Version Control
Version Date Main author Changes

0.1 2015-08-05 Kenneth Template prepared

0.2 2014-08-14 Kenneth & Andi Requirements and Accident definition added

0.3 2014-10-28 Kenneth & Andi Introduction added and problem formulation fine-tuned

0.4 2014-10-29 Kenneth Analysis and Design section added

0.5 2014-11-04 Kenneth & Andi Proofing Introduction, Analysis and Design sections

0.6 2014-11-25 Kenneth Added sensors as actor in UseCase diagram and
changed/updated MSD structure format

0.7 2014-12-09 Kenneth & Andi Implementation section added

0.8 2014-12-10 Kenneth & Andi Testing and results/discussion sections added

0.9 2014-12-11 Kenneth & Andi Abstract, conclusion and references added
1.0 2014-12-12 Kenneth & Andi Proofing all sections

mailto:127305@VIA.DK
mailto:166687@VIA.DK
mailto:SEK@VIA.DK

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 2

Contents

Abstract ... 6

1. Introduction .. 7

1.1. Background ... 7

1.2. Summary... 8

1.3. Problem Formulation ... 9

1.4. Delimitations .. 9

2. Analysis .. 10

2.1. Overall System Architecture ... 10

2.2. UseCase Diagram .. 11

2.3. Actor Descriptions .. 12

2.4. UseCase Descriptions ... 12

2.5. Requirements ... 13

2.5.1. Functional .. 13

2.5.2. Non-functional .. 14

2.6. Overall System Infrastructure .. 14

2.7. Accident Definition ... 15

2.8. Crash Data .. 15

2.9. Voice Communication .. 18

2.10. Data Communication .. 18

3. Design .. 19

3.1. In-Vehicle System (IVS) ... 19

3.2. Electronic Control Unit (ECU) ... 20

3.3. Human Machine Interaction (HMI) .. 21

3.4. Technical Choices ... 22

3.4.1. Hardware decisions ... 22

3.4.2. Software Decisions .. 23

4. Implementation ... 23

4.1. Introduction .. 23

4.1.1. Hardware... 23

4.1.2. Software .. 26

4.1.3. File Diagram .. 27

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 3

4.1.4. Code Structure .. 28

4.2. Start-up and Main Routine ... 29

4.2.1. Overview ... 29

4.2.2. Code .. 30

4.3. Basic Task Scheduling ... 31

4.3.1. Overview ... 31

4.3.2. Code .. 33

4.3.3. Execution Time .. 36

4.4. Communication and GPS .. 38

4.4.1. Overview ... 38

4.4.2. Code .. 39

4.4.3. Execution Time .. 41

4.5. Car Panel ... 42

4.5.1. Overview ... 42

4.5.2. Code .. 43

4.6. Emergency Reporting ... 44

4.6.1. Overview ... 44

4.6.2. Code .. 45

4.6.3. Execution Time .. 47

5. Testing ... 48

5.1. Testing Tools ... 48

5.1.1. Accelerometer Analyser .. 48

5.1.2. SIM908 AT Terminal .. 49

5.1.3. PASP Simulator .. 51

5.1.4. Oscilloscope .. 53

5.2. Test Plan and Specification ... 53

5.2.1. Unit Test .. 54

5.2.2. Module Test .. 54

5.2.3. Integration Test ... 54

5.2.4. Regression Test ... 54

5.2.5. Stability Test .. 54

5.2.6. Functionality Test .. 56

5.2.7. Not Conducted Tests ... 56

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 4

6. Result and Discussion .. 57

6.1. Improvements .. 57

6.2. From Prototype to Market ... 58

7. Conclusion ... 59

8. Appendices .. 60

9. References ... 62

10. List of Acronyms .. 64

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 5

Figures

Fig. 1. VROOM communication chain architecture .. 8

Fig. 2. VROOM system architecture .. 10

Fig. 3. UseCase Diagram .. 11

Fig. 4. Activity Diagram – Overall system infrastructure .. 14

Fig. 5. Acceleration Graph – Emergency breaking 40 - 0 km/h... 16

Fig. 6. Acceleration Graph – Emergency breaking 90 - 0 km/h... 16

Fig. 7. Acceleration Graph – Slamming car door ... 17

Fig. 8. MSD structure... 18

Fig. 9. In-Vehicle System (IVS) – Design .. 19

Fig. 10. Electronic Control Unit (ECU) – Design... 20

Fig. 11. Human Machine Interaction (HMI) – Overview ... 21

Fig. 12. Human Machine Interaction (HMI) – PCB .. 21

Fig. 13. Test Platform – Overall ... 24

Fig. 14. Test Platform – Accelerometer and thermometer ... 24

Fig. 15. Test Platform – Modules .. 25

Fig. 16. Test Platform – Debug and prototype boards .. 25

Fig. 17. System File Diagram ... 27

Fig. 18. State Machine Diagram – System initiation and main routine .. 29

Fig. 19. State Machine Diagram – Task scheduling ... 32

Fig. 20. Timing Graph – Main system .. 36

Fig. 21. Activity Diagram – SIM908 initialisation and start-up .. 38

Fig. 22. Timing Graph – SIM908 module setup ... 41

Fig. 23. Activity Diagram – Car panel .. 42

Fig. 24. Sequence Diagram – Emergency alarm .. 44

Fig. 25. Timing Graph – Emergency reporting .. 47

Fig. 26. Accelerometer Analyser – Explained .. 48

Fig. 27. SIM908 AT Terminal – Explained .. 50

Fig. 28. SIM908 AT Terminal – Map view .. 50

Fig. 29. PSAP Simulator – Explained .. 52

file:///C:/Users/Kenneth/Dropbox/ICT%20Engineering/Bachelor%20Project/Project%20Report%20(work%20in%20progress).docx%23_Toc406138236
file:///C:/Users/Kenneth/Dropbox/ICT%20Engineering/Bachelor%20Project/Project%20Report%20(work%20in%20progress).docx%23_Toc406138244

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 6

Abstract
The purpose of this project is to develop a prototype of an eCall system, as an aftermarket solution. This

means that this system works independently of car make and model as it does not utilise any of the cars

internal components, except the battery. This includes older cars as well. This system is autonomous and

intended to be plug’n’play, easy to use and at an affordable price.

By installing this system in a vehicle, the driver can feel safe and rely on that help will arrive as-fast-as-

possible, even in case of a solo accident where it is not possible to call for help. This system brings the

driver closer to the help required in a given emergency. It also helps speed up the response time for the

emergency personal as the relevant information about the emergency including the position of the car is

transmitted directly.

This prototype is not tested in a real car, however a remote control car is used for demonstrating and

proof of concept.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 7

1. Introduction

1.1. Background

Nowadays people pay a very steep price for mobility. In Europe alone around 40,000 people die on the

roads every year[1].Many of the fatalities are not only caused by the crashes themselves, but by the time

it takes for help to arrive.

The first problem is that someone has to notify the authorities. More often than not the involved people

are incapacitated and therefore incapable of doing this, so a third party has to do this. Time is wasted.

Next problem arises when the emergency operator needs to collect the required information; it can be

challenging for the operator to retrieve the information from a random caller. A protocol is needed.

Lastly, the operator needs to dispatch the proper emergency response.

A pan-European project called HeERO[2], addresses an in-vehicle emergency call services based on the

common European Emergency number, 112. HeERO is a group of European pilots who develop,

implement and tests the infrastructure and standards. This becomes both the service and an IVS (In-

Vehicle System) called eCall. At this moment HeERO is in the final stage of phase 2, where Denmark is

one out of 15 countries involved in testing and validating the standards in real conditions. eCall

addresses standards for third parties as well, but as HeERO project is not yet completed, things might

change and some are still undefined.

December 4th 2014 the EU parliament passed a legislation that will ensure that from March 31st 2018 all

new passenger cars and light duty vehicles will be fitted with eCall[3].

The IVS in this project will make it possible for people with pre-2018 cars to have the same opportunity

and the same safety net as eCall provides with an aftermarket solution.

1 Commissions white paper: "European transport policy for 2010"
2 HeERO – Harmonised eCall European Pilot: http://www.heero-pilot.eu/
3 Source: http://www.europarl.europa.eu/news/en/news-room/content/20141201IPR81901/html/MEPs-back-
deal-with-Council-on-automatic-emergency-call-system-for-cars

http://www.heero-pilot.eu/
http://www.europarl.europa.eu/news/en/news-room/content/20141201IPR81901/html/MEPs-back-deal-with-Council-on-automatic-emergency-call-system-for-cars
http://www.europarl.europa.eu/news/en/news-room/content/20141201IPR81901/html/MEPs-back-deal-with-Council-on-automatic-emergency-call-system-for-cars

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 8

1.2. Summary

The purpose of this system is to make vehicles on the road able to call for help automatically whenever

an accident happens.

Fig. 1. VROOM communication chain architecture

The basic system architecture is based on the eCall standards and requires both voice and data

communication. The data should include GPS coordinates of the vehicle’s location and voice

communication is essential, not only to provide psychological first aid, but also to ensure an efficient

and professional expedition of the accident.

The PSAP (Public Safety Answering Point), known as “Alarm Centralen” in Denmark, is target to the

common emergency number in Europe, 112.

The IVS (In-Vehicle System) is the system mounted in the car which actually detects an accident and

automatically calls PSAP for help. It also includes a panel for manual activation of the system.

This project revolves around making the IVS. It will be a prototype only and not mounted in a real car. It

will be demonstrated on an RC (remote controlled) car and all communication with PSAP is simulated.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 9

1.3. Problem Formulation

Developing a system which can handle incidents solely on feedback from vehicles raises some problems

of different nature, such as:

eCall standards:

 Which standards are required to comply with eCall?

 Which type of communication channels should be opened to PSAP?

 Which data is sent to PSAP?

Emergency detection:

 What type of incidents should the IVS handle?

 Should the driver be able to call for help manually?

Handling of data:

 How does the IVS know when an accident occur?

 How does the IVS determine the location of the car?

 How does the IVS record data?

 How does the IVS send data to PSAP?

Human interface:

 How is the driver notified when the emergency call is successful?

 How is the driver informed of the IVS’ status?

 How should the driver be able to communicate with PSAP?

Safety:

 How to avoid false alarms?

1.4. Delimitations

Following is delaminated in this project:

 Real communication with PSAP will not be implemented

 Only a rough prototype will be developed as a proof of concept thus:

 Material of the ECU casing will not be considered

 Placement of the ECU will not be considered

 Making the ECU cost effective will not be considered

 Backup power will not be considered

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 10

2. Analysis

2.1. Overall System Architecture

Fig. 2. VROOM system architecture

The VROOM IVS, uses mobile communication technology in order communicate with PSAP. In case of an

incident, voice communication is established via GSM network, while an MSD (Minimum Set of Data)

packet on 140 bytes is sent to PSAP using GPRS. The MSD includes information about the incident,

vehicle location etc. which requires that IVS uses GPS technology. When MSD is successfully received,

the PSAP is capable of dispatching the proper help for the involved vehicle.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 11

2.2. UseCase Diagram

The core functionalities of VROOM is to automatically detect when an accident occur and automatically

contact PSAP. This means that there are almost no conventional UseCases started by human

interactions. However, the few there are, still have very important functionalities. The IVS Sensors are

the sensors which automatically trigger when an accident occur.

Fig. 3. UseCase Diagram

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 12

2.3. Actor Descriptions

These describe in detail the actors, who interacts with VROOM.

Name Driver

Description A person driving a vehicle fitted with the WROOM system

Attributes Person / Machine, Primary / Secondary, Active / Passive

Name PSAP

Description Personnel at the PSAP

Attributes Person / Machine, Primary / Secondary, Active / Passive

Name IVS Sensors

Description Sensors detecting an accident. Part of the IVS

Attributes Person / Machine, Primary / Secondary, Active / Passive

2.4. UseCase Descriptions

These describe in detail the conditions, in how and when each UseCase is stared and executed.

Item Value

UseCase Call for assistance

Actor Driver and IVS Sensors

Summary Driver: is able to make an emergency call in case of an not-
automatically detectable incident or accident, which requires
assistance from PSAP
IVS Sensors: automatically calls for assistance when an accident is
detected

Pre-condition An incident or accident has happened

Post-condition Automatically establishes voice communication and sends an MSD
packet to PSAP

Base Sequence

Branch Sequence If the driver cancels the emergency call within the predefined time
span for cancelling an emergency

Exception Sequence

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 13

Item Value

UseCase Cancel the emergency call in the event of false alarm

Actor Driver

Summary The driver must be able to cancel an alarm if the alarm was triggered
by accident or if there is no need for further assistance. This applies
both if the alarm is triggered automatically or manually

Pre-condition An alarm is triggered while no communication is established yet

Post-condition The alarm is cancelled. No voice and/or data communication is
established to PSAP

Base Sequence

Branch Sequence If the driver does not cancel the emergency call within the predefined
time span, PSAP is contacted

Exception Sequence

Item Value

UseCase Communicate via an automatically established voice communication

Actor Driver and PSAP

Summary A voice communication is established when an incident is registered
either automatically or manually

Pre-condition An emergency call has been triggered and not cancelled

Post-condition Voice channel between the driver and PSAP is established

Base Sequence

Branch Sequence

Exception Sequence If no mobile connection or if driver is unable to communicate

2.5. Requirements

2.5.1. Functional

 The IVS must switch on with the vehicle’s ignition

 The IVS must be able to detect a crash involving the vehicle

 The IVS must be able to detect a fire in the vehicle

 In case of an emergency the IVS must establish following communication to PSAP:

 Voice

 Data

 The following data must be recorded from sensors:

 Vehicle location

 Crash data

 Cabin temperature

 The driver must be able to call for emergency manually

 The driver must be notified when an emergency call has been performed successfully

 The driver must be able to cancel the alarm in case of false alarm

 The driver must be informed of the IVS’ operational state

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 14

2.5.2. Non-functional

 MISRA C – 2004 standards[4] for software developing to vehicles must be followed

 eCall standards[5] for pan-European in-vehicle emergency call service must be followed

2.6. Overall System Infrastructure

This activity diagram shows the infrastructure of the IVS. It shows possible branches and the life cycle of
the whole system.

Fig. 4. Activity Diagram – Overall system infrastructure

4 MISRA C: http://www.misra-c.com/
5 HeERO Pilot: http://www.heero-pilot.eu/

http://www.misra-c.com/
http://www.heero-pilot.eu/

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 15

2.7. Accident Definition

It is important to clarify exactly what constitutes an accident, as this is the core functionality of the

system. An accident has happened if:

 the vehicle drives into something that triggers the airbag

 the vehicle is hit by an object with a force in excess of 7𝐺 − 20𝐺 for at least 20𝑚𝑠[6]

 the temperature in the cabin raises in excess of 1℃ per 8 seconds[7] (this would be interpreted as

fire in the vehicle)

As this system is intended to not interact with the cars internal components, it will not trigger when an

airbag deploys. It will instead measure the force of the crash itself.

2.8. Crash Data

To determine whenever an event is considered an accident, accelerometer measurements in different

conditions and situations have been done. Crash data is measured in a real car. For this purpose an

analysis platform, with a graphical user interface, has been developed (ref. 5.1.1) and the recorded data

have been analysed in order to determine a threshold. This threshold determines the difference

between a crash and a hard manoeuvre.

By using the accelerometer data and seeing it as a three dimensional vector, it is possible to calculate

the total acceleration in an arbitrary direction by using the equation:

𝑉𝐴𝐶𝐶_𝑡𝑜𝑡𝑎𝑙 = √𝑥2 + 𝑦2 + 𝑧2

This makes it possible to eliminate the complexity of installing the accelerometer in a certain direction

as the direction does not influence the total acceleration.

As the gravity is a constant 1𝐺, it is possible to use that as a baseline for measurements.

The graphs should be read as:

 Horizontal axis: time in 9𝑚𝑠 steps

 Vertical axis: acceleration in 1𝐺 steps

 Graph colours:

 Red – x-axis

 Green – y-axis

 Blue – z-axis

 Yellow – Total length of 3D vector

6 Airbags and Crash sensors: http://www.aa1car.com/library/airbag01.htm
6 Deflated expectations: http://www.drive.com.au/motor-news/deflated-expectations-20100331-refb.html
7 Heat detectors: http://en.wikipedia.org/wiki/Heat_detector

http://www.aa1car.com/library/airbag01.htm
http://www.drive.com.au/motor-news/deflated-expectations-20100331-refb.html
http://en.wikipedia.org/wiki/Heat_detector

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 16

Fig. 5. Acceleration Graph – Emergency breaking 40 - 0 km/h

It is clear that there is almost no change to the total acceleration when breaking from this speed. With

an acceleration max of 1.44𝐺 it is almost within the normal noise of the accelerometer.

Fig. 6. Acceleration Graph – Emergency breaking 90 - 0 km/h

At 90 km/h there is a much larger difference. There is now a max acceleration of 1.94𝐺. This is

significantly more than gravity alone.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 17

Also other shock factors should be considered, like a door being slammed.

Fig. 7. Acceleration Graph – Slamming car door

Now the max acceleration is peaking at 2.32𝐺.

As the research showed (ref. 2.7) that most airbags trigger between 7𝐺 and 20𝐺, 10𝐺 is chosen as the

trigger value. It is high enough so that it does not trigger at normal to aggressive driving, but low enough

to be within the accepted range of a crash. Also there seems to be a consensus that a crash spans over a

period of about 20𝑚𝑠.

With this data in hand, it is decided to use the following parameters to conclude if a crash has

happened:

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 10𝐺

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 ≥ 20𝑚𝑠

This denotes the parameters to the detection algorithm.

A selection of recorded accelerometer data can be found:

…\Testing and Analysing data\Accelerometer Analysing\...

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 18

2.9. Voice Communication

As no test calls is allowed to PSAP, voice communication is simulated using a mobile phone. Although a

SIM card is not required to call 112 in Denmark, it is required according eCall standards, as not all

countries in Europe supports emergency calls without a SIM card.

2.10. Data Communication

The exact protocol is not available and no PSAP servers are accessible and are therefore out of scope of

this project. However, the data structure is prepared so it complies with eCall standards. An MSD

(Minimum Set of Data) with a specific structure is sent via GPRS technology.

Fig. 8. MSD structure

The size of the structure is fixed 140 bytes. This means that unused bytes is assigned with the value 0x20
(space). The structure in detail are defined in EN 15722.

Name Size Type Description

Version 1 Byte Encoding optional data reference

Msg. Identifier 1 Byte Numbers of re-transmissions

Control 1 Byte Bit representation:

7 6 5 4 3 2 1 0

Automatic
activation

Manual
activation

Test call Confidence in
position

Reserved

Vehicle class 1 Byte Bit representation:

7 6 5 4 3 2 1 0

Classification Category

VIN 20 String Vehicle identification number according ISO 3779

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 19

Fuel type 1 Byte Value representation:

0 1 2 3 4 5 6

Other Gasoline Diesel Naturalgas Propane Electric Hydrogen

Time stamp 4 Integer UTC seconds (value >= 0)

Latitude 4 Integer Latitude (WGS-84) in milliarcseconds

Longitude 4 Integer Longitude (WGS-84) in milliarcseconds

Direction 1 Byte Direction in degrees. The nearest integer of 255*value/360

Optional data 102 String Further data (e.g. crash data, number of passengers) or blank field

Total bytes: 140

3. Design

3.1. In-Vehicle System (IVS)

Fig. 9. In-Vehicle System (IVS) – Design

The IVS consists of two parts:

ECU (Electronic Control Unit) which is the core of the system and considered a black-box with no access

for unauthorised technicians. The ECU must be installed a secure place with minimal chance of damage

in the event of an accident.

HMI (Human Machine Interaction) which is the user interface. The HMI should be installed in the cabin

of the vehicle close to the driver.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 20

3.2. Electronic Control Unit (ECU)

Fig. 10. Electronic Control Unit (ECU) – Design

The ECU consists of different hardware components to accommodate with requirements for this system:

GSM: Used for voice communication

GPRS: Used for data communication

GPS: Used to determine the location of the car

Accelerometer: Used to measure the acceleration in three dimensions

Thermometer: Used to determine the cabin temperature

MCU: Control unit for the hardware

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 21

3.3. Human Machine Interaction (HMI)

Fig. 11. Human Machine Interaction (HMI) – Overview

The HMI consists of the Car Panel with a three-coloured LED which indicates the operational state of the

system and a red control LED to indicate when an emergency call is activated. The user is able to contact

PSAP manually by pressing the “Alarm” button for at least 3 seconds and the user has the option to

cancel an emergency call in the event of false alarm by pressing the “Cancel” button for at least 3

seconds.

Fig. 12. Human Machine Interaction (HMI) – PCB

A User Guide for VROOM car panel can be found:

…\Documentation\Project Report\Appendices\Appendix D – User Guide VROOM Car Panel.pdf

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 22

3.4. Technical Choices

To develop this system some decisions and technical choices have been made both in hardware and

software perspective. The decision on hardware is only for prototyping. The ideal use of hardware is to

develop a custom board with only the required functionalities. To research and develop a cost efficient

module is out of scope for this project.

3.4.1. Hardware decisions

Hardware Model Description

MCU ATMega2560 Low-power 8-bit AVR RISC-based MCU with 256 kb flash
memory. Prototype is developed on a STK600 board

GSM SIM908 SIM908 provides both GSM, GPRS and GPS.
Communication with the chip is done using AT
commands via UART.
The chip is mounted on a module designed as an Arduino
shield and includes on-board audio amplification.

GPRS

GPS

Accelerometer LIS331HH 3-axis accelerometer

Thermometer TC72 Digital thermometer

Car Panel HMI VROOM rev. 0.1 Self-developed prototype with tact-switches and LEDs

LCD Display HD44780 LCD display used for debugging

It is important that the MCU is low power as it is going to operate in a car, where there is limited

power. Here the ATMega 2560 works great, plus it has a vast variety of inputs and interrupts, which

makes it a nice platform to develop on.

As this system relies on positioning and mobile communication, both GPS, GSM and mobile data

(GPRS, EDGE, 3G or LTE) is needed. The SIM908 has all of it included and seems to be a good module

to develop on. It is relative cheap and it is available as a development board.

An accelerometer with a full-scale of at least ±20𝐺 is needed, the LIS331HH was chosen. It has a full-

scale of ±24𝐺. It uses an SPI interface and is well documented.

As the requirements for the thermometer are relative limited, the TC72 is chosen, as it was already at

hand.

The car panel is developed and produced based on the requirements for the HMI.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 23

3.4.2. Software Decisions

VROOM is written in C and complies with most of the rules in MISRA C 2004 coding standards, which

is used in the automotive industry.

It is decided not to develop this system using an operating system. This choice is based on the fact

that developing the whole framework, gives a better understanding of how things cooperate

together.

The way the system is built is based around manual scheduling. Manual scheduling has a number of

pros:

 No resource will be starved so all data can be trusted

 The system is highly predictable so it is easy to work around

 There is practically no overhead, so timing is easily calculated

The dangerous thing about using manual scheduling is that the effectiveness is solely dependent on

the implementation.

It is a cyclic executive in the way that all tasks are run after a specific premade table.

The scheduler allows all tasks to be interrupted. This is intended, as the only thing that will interrupt

the scheduler, is the event of an alarm. In this case, the scheduler is halted and not resumed until the

alarm is cleared.

Hence the system runs as a foreground/background system in the way that the scheduling is running

in the background and the emergency reporting is interrupt driven and running in the foreground.

4. Implementation

4.1. Introduction

4.1.1. Hardware

The system is built from different modules.

 The MCU is on an STK600 development board as this is easy to build the test platform up around

 The SIM908 module is on an Arduino shield as it has the needed peripherals on the board

 The LIS331HH accelerometer and TC72 thermometer is mounted on an airplane shaped PCB

board as it was currently available

 There is an LCD board for debugging

 There is a prototype HMI panel

Detailed description of the port mapping for all the hardware components can be found here.

…\Source Code\MemoryMap.xlsx"

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 24

Fig. 13. Test Platform – Overall

 It is all mounted on an RC car for testing.

Fig. 14. Test Platform – Accelerometer and thermometer

The accelerometer is mounted firmly on the chassis of the RC car to make sure it measures the

impact force of the car.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 25

Fig. 15. Test Platform – Modules

It is all packed in foam to protect it from damage when testing.

Fig. 16. Test Platform – Debug and prototype boards

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 26

4.1.2. Software

The complete system consists of 6166 lines of code and takes up 14442 bytes of program memory on

the MCU.

It has been a priority to keep the code clean and easy to read, modularized, reusable and above all

efficient.

This has resulted in separated files for specific purposes, like driver for the SPI and UART but also for

hardware elements like the car panel, the accelerometer and the thermometer.

The code is clean in the way that the structure is hierarchical and indented so that it does not clutter.

Meaningful naming is used throughout to make sure the code is self-explanatory, to some extent.

Finally it is thoroughly documented according to the doxygen standard to make it easy for anyone to

dig into and figure out how a specific function or module works.

The reason behind making the code modular is that as this is only a prototype, it is very likely that

some of the components need to be replaced with better or cheaper ones. Here the modular design

makes it easy to replace components as it is only the component specific file(s) that needs to be re-

written. The only downside to this is that it might take up more program memory.

The internal communication devises (UART and SPI) have universal drivers so they are easily

reconfigurable in other contexts.

The code is written as efficient as possible, with the available knowledge, to make it possible to run

on a cost effective MCU, although this research is not covered in this report, it is still important to

take this into account when programming.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 27

4.1.3. File Diagram

Fig. 17. System File Diagram
application contains the main file and a config header file, which holds all configurations for the

system and porting. A scheduler is implemented as a state machine, so that shared recourses are

protected. The scheduler is started once by a function call in the initialisation phase and is continues

started by a timer.

sensors consist of an accelerometer and a thermometer. Both access the same communication

interface, SPI.

data_communication contains SPI and UART modules. SPI is used for sensor communication and

UART for SIM908 module communication using AT commands. A general driver for UART0 and

UART1 is implemented in order to support loopback to PC using RS232.

hardware_board contains the SIM908 module, which is the communication part of the IVS. It also

contains the Car Panel which is the HMI part of the IVS. Car Panel handles the support for manually

setting an alarm, cancel the alarm or reset emergency detection, in case of false alarm. It also

visualise the connection status of the system.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 28

accident_logic holds the algorithm for automatically crash and fire detection. This module also holds

the MSD structure and is responsible for collecting all data needed from the respective modules.

util contains LCD driver used for debugging and an R2R driver for duty time analysing. As the LCD is

only used as a tool for debugging, and not a part of this system, it is decided to use an already

existing driver written by Peter Fleury.

Detailed description of all functions can be found in doxygen documentation.

…\Documentation\Doxygen\index.html

4.1.4. Code Structure

The following example displays the general code structure used in this project. The example is from a

function in accident_data.c, which is called whenever an accident or incident occurs. It inherits

information from different modules and assembles it in a global structure EXT_MSD.

The function set_MSD_data(...); is called in SIM908 module driver, to get and set the GPS data

needed. All other information for MSD are collected from global flags or configuration defines and

set locally in this file using static functions.

void ad_emergency_alarm(void)

{

 EXT_MSD.version = CONFIG_MSD_FORMAT_VERSION;

 EXT_MSD.vehicle_class = CONFIG_MSD_VEHICLE_CLASS;

 EXT_MSD.fuel_type = CONFIG_MSD_FUEL_TYPE;

 set_MSD_data(&EXT_MSD.time_stamp, &EXT_MSD.latitude, &EXT_MSD.longitude, &EXT_MSD.direction);

 _confidence_in_position = (EXT_MSD.latitude != 0 || EXT_MSD.longitude != 0) ? true : false;

 _set_control_byte(_confidence_in_position,

 CONFIG_MSD_TEST_CALL,

 EXT_EMERGENCY_FLAG == EMERGENCY_MANUAL_ALARM,

 EXT_EMERGENCY_FLAG == EMERGENCY_AUTO_ALARM);

 _set_VIN(CONFIG_MSD_VIN);

 _set_optional_data();

 send_MSD(CONFIG_VROOM_ID);

 call_PSAP();

 EXT_EMERGENCY_FLAG = EMERGENCY_ALARM_SENT;

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 29

4.2. Start-up and Main Routine

4.2.1. Overview

The run.c file holds the main function of the system, which are where the program starts its

execution.

Fig. 18. State Machine Diagram – System initiation and main routine
The main function is straight forward and has very little complexity, besides that, it can be configured

to execute different contexts of the program. These contexts includes or excludes different tests by

setting the macro to the state ON or OFF, in top of the run.c file. This design makes the code well-

structured and readable while it makes it easy to test the respectively modules separately.

The actual program is the Integration test, as it integrates all modules in the system. To run this

context it must be defined ON while all other contexts must be defined OFF.

Integration test context is explained in following section.

#define UNIT_TEST OFF

#define MODULE_TEST_SENSORS OFF

#define MODULE_TEST_SIM908 OFF

#define MODULE_TEST_CAR_PANEL OFF

#define MODULE_TEST_UART OFF

#define INTEGRATION_TEST_SIM908_SENSORS ON

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 30

4.2.2. Code

First the hardware boards are initiated and afterwards started. This is done to ensure nothing is

interrupted, as global interrupts are first enabled after the initiation.

The SIM908 module is started and sets up all its configuration using AT commands via UART. (ref. 4.4)

Next the Car Panel is started, which simply just enable interrupts for the Alarm button on the Car

Panel board. (ref. 0)

Finally the scheduler is started, which is the basic task scheduler of the system. (ref. Basic Task

Scheduling4.3Fejl! Henvisningskilde ikke fundet.)

The infinite loop in main is where actions are performed based on the Status flags in the system.

while (1)

{

/* Sets the status LED on car panel */

 (EXT_CONNECTION_CREG_FLAG == CREG_REGISTERED_HOME_NETWORK ||

 EXT_CONNECTION_CREG_FLAG == CREG_REGISTERED_ROAMING) &&

 (EXT_EMERGENCY_FLAG == EMERGENCY_NO_ALARM ||

 EXT_EMERGENCY_FLAG == EMERGENCY_ALARM_SENT ||

 EXT_EMERGENCY_FLAG == EMERGENCY_FALSE_ALARM)

? car_panel_set_status(STATUS_GREEN) : car_panel_set_status(STATUS_RED);

 /* Checks the emergency flags */

 if (EXT_EMERGENCY_FLAG == EMERGENCY_AUTO_ALARM ||

EXT_EMERGENCY_FLAG == EMERGENCY_MANUAL_ALARM)

 {

 scheduler_halt();

 ad_emergency_alarm();

 /* Enable cancel button in case of false alarm */

 car_panel_set_cancel_button_state(true);

 }

 else if (EXT_EMERGENCY_FLAG == EMERGENCY_FALSE_ALARM)

 {

 scheduler_resume(true);

 EXT_EMERGENCY_FLAG = EMERGENCY_NO_ALARM;

 }

}

int main (void)

{

 car_panel_init();

 SIM908_init();

 sei();

 SIM908_start();

 car_panel_start();

 scheduler_start(NULL);

 while (1) { . . . }

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 31

4.3. Basic Task Scheduling

4.3.1. Overview

The basic task scheduling of the system is where data is gathered and analysed. The data must be

gathered consistently and in a controlled fashion so that the data can be trusted.

When reliable data is gathered, it is important to analyse it carefully to determine if an accident has

occurred.

As no operating system is used, this is all done using a scheduler. This scheduler is a state machine

pattern controlled by a timer.

As the analysis of the accelerometer data and general research showed that a crash spans over

20𝑚𝑠, the four main tasks run at that speed. The last task run every 8𝑠, as per the definition of a fire

(ref. 2.7). They all have different execution times.

The state machine has 9 states:

1. Initialise thermometer

 Sends the setup address and parameters to the sensor via the SPI bus

2. Initialise accelerometer sensor

 Sends the setup address parameters to the sensor via the SPI bus

3. Initialise timer

 Sets up the registers in the MCU

4. Idle

 Idle state for when not working

5. Request temperature read

 Sends address and dummy bytes to the sensor for requesting temperature reading

6. Request accelerometer read

 Sends address and dummy bytes to the sensor for requesting accelerometer readings

7. Get and store the requested temperature and accelerometer readings

 Gets the readings from the sensors and store them locally in a variable / buffer

8. Check if a crash has occurred

 Analyses the accelerometer readings to determine if a crash has occured

9. Check if a fire has errupted

 Analyses the temperature readings to determine if a fire has errupted

States 1-3 are entered on the startup of the system only. States 3-9 are entered throughout the life

cycle of the system, but can be halted.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 32

Fig. 19. State Machine Diagram – Task scheduling

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 33

4.3.2. Code

The scheduler is very basic. It runs cyclic execution so that everything is completely predictable and

has minimal overhead. It supports interruption so that the emergency reporting can happen

immediately, when an emergency has been detected.

When started, it sets the state to the first desired state, saves a pointer to a callback function (not

used at this time) and releases the scheduler; essentially starting the system core.

The scheduler_release function is where the state machine is located.

Here are the first 3 states which is where the initialiasation of the thermometer, accelerometer

sensor and timer is done.

The two first states (thermometer init and accelerometer init) are both dependant on completion as

they both use the SPI bus. This means that once all of the setup bytes have been successfully sent,

the driver releases the scheduler.

void scheduler_start(void (*callback_function_ptr)(char __data)) {

 _state = state_tc72_init;

 _callback_function_ptr = callback_function_ptr;

 scheduler_release();

}

void scheduler_release(void) {

 switch(_state) {

 /**/

 /* Init state for temperature sensor */

 /**/

 case state_tc72_init :

 _state = state_acc_init;

 init_tc72(PB4);

 break;

 /**/

 /* Init state for accelerometer sensor */

 /**/

 case state_acc_init :

 _state = state_timer_init;

 acc_init(PB0, ACC_NORMAL_MODE, ACC_ODR_400, ACC_24G);

 break;

 /**/

 /* Init state for timer */

 /**/

 case state_timer_init :

 _state = state_idle;

 timer1_init_CTC(TIMER_PS256, CONFIG_SCHEDULER_FREQUENCY);

 break;

 /**/

 /* Main routine starts here. */

 /* */

 /* Idle state */

 /**/

 case state_idle :

 _state = state_tc72_read;

 break;

 /**/

 /* Read state for temperature sensor */

 /**/

 case state_tc72_read :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_temp = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_TEMP_REQ);

#endif

 _state = state_acc_read;

 measure_temperature();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_temp);

#endif

static void _tc72_callback(uint8_t __data[]) {

 switch (_state) {

 case INIT:

 _state = RUNNING;

 scheduler_release();

 break;

 case RUNNING: {

 /* Disable interrupt */

 uint8_t SREG_cpy = SREG;

 cli();

 _msb = __data[1];

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 34

After the timer has been initialised, the scheduler enters the idle state meaning that the system is

now running its core routine.

This idle state only sets up the next state.

When the timer triggers, it releases the scheduler.

The system then runs one whole cycle and ends up in the idle state once it is done.

/**/

/* Main routine starts here. */

/* */

/* Idle state */

/**/

 case state_idle :

 _state = state_tc72_read;

 break;

/**/

/* Read state for temperature sensor */

/**/

 case state_tc72_read :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_temp = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_TEMP_REQ);

#endif

 _state = state_acc_read;

 measure_temperature();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_temp);

#endif

 break;

/**/

/* Read state for accelerometer sensor */

/**/

 case state_acc_read :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_acc = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_ACC_REQ);

#endif

 _state = state_store_in_buffers;

 acc_measure();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_acc);

#endif

 break;

 /**/

 /* State where measurements are read and stored in variables/buffers */

 /**/

 case state_store_in_buffers :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_read = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_SENSORS_READ);

#endif

 _state = state_idle;

 _x_axis_buffer[_acc_buffer_tail] = (int)(acc_get_x_axis() * 100);/* any higher than

4000 will risk hitting the limit of 16 bit signed variable */

 _y_axis_buffer[_acc_buffer_tail] = (int)(acc_get_y_axis() * 100);

 _z_axis_buffer[_acc_buffer_tail] = (int)(acc_get_z_axis() * 100);

 _acc_buffer_tail = (_acc_buffer_tail + 1) % CONFIG_ALARM_CRASH_NO_OF_READINGS;

 _temperature = get_temperature();

 _state = state_detect_accident;

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_read);

#endif

 scheduler_release();

 break;

 /**/

 /* State where an accident is detected */

 /**/

 case state_detect_accident :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_crash_det =

r2r_start_task(DEBUG_TASK_ID_ACCIDENT_DETECTION_CRASH_DETECTION);

#endif

 _state = ++_execution_counter % (CONFIG_ALARM_FIRE_TRIGGER_TIME / (1000 /

CONFIG_SCHEDULER_FREQUENCY)) == 0? state_detect_fire : state_idle;

 check_for_crash();

 scheduler_release();

/**//**

 * @ingroup timer

 * @brief Releases the scheduler when the timer hits the TOP value

 ***/

ISR(TIMER1_COMPA_vect)

{

 scheduler_release();

}

/**/

/* Read state for temperature sensor */

/**/

 case state_tc72_read :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_temp = r2r_start_task(DEBUG_ID_SENSOR_SCHEDULER_TEMP_REQ);

#endif

 _state = state_acc_read;

 measure_temperature();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_temp);

#endif

 break;

/**/

/* Read state for accelerometer sensor */

/**/

 case state_acc_read :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_acc = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_ACC_REQ);

#endif

 _state = state_store_in_buffers;

 acc_measure();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_acc);

#endif

 break;

 /**/

 /* State where measurements are read and stored in variables/buffers */

 /**/

 case state_store_in_buffers :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_read = r2r_start_task(DEBUG_TASK_ID_SENSOR_SCHEDULER_SENSORS_READ);

#endif

 _state = state_idle;

 _x_axis_buffer[_acc_buffer_tail] = (int)(acc_get_x_axis() * 100);/* any higher than

4000 will risk hitting the limit of 16 bit signed variable */

 _y_axis_buffer[_acc_buffer_tail] = (int)(acc_get_y_axis() * 100);

 _z_axis_buffer[_acc_buffer_tail] = (int)(acc_get_z_axis() * 100);

 _acc_buffer_tail = (_acc_buffer_tail + 1) % CONFIG_ALARM_CRASH_NO_OF_READINGS;

 _temperature = get_temperature();

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 35

Note that as the fire check only happens every 8 seconds, the detect crash state has a counter to

determine when it should set the state to the idle state and when to set it to detect fire state.

/**/

/* State where measurements are read and stored in variables/buffers */

/**/

 case state_store_in_buffers :

#ifdef DEBUG_TASK_MEASURE

_task_prev_id_read = r2r_start_task(DEBUG_ID_SENSOR_SCHEDULER_READ);

#endif

 _state = state_idle;

 _x_axis_buffer[_acc_buffer_tail] = (int)(acc_get_x_axis() * 100);

 _y_axis_buffer[_acc_buffer_tail] = (int)(acc_get_y_axis() * 100);

 _z_axis_buffer[_acc_buffer_tail] = (int)(acc_get_z_axis() * 100);

 _acc_buffer_tail = (_acc_buffer_tail + 1) % CONFIG_ALARM_CRASH_NO_OF_READINGS;

 _temperature = get_temperature();

 _state = state_detect_accident;

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_read);

#endif

 scheduler_release();

 break;

/**/

/* State where an accident is detected */

/**/

 case state_detect_accident :

#ifdef DEBUG_TASK_MEASURE

 _task_prev_id_crash_det = r2r_start_task(DEBUG_ID_ACCIDENT_CRASH_DETECTION);
#endif

 _state = ++_execution_counter % (CONFIG_ALARM_FIRE_TRIGGER_TIME / (1000 /

CONFIG_SCHEDULER_FREQUENCY)) == 0? state_detect_fire : state_idle;

 check_for_crash();

 scheduler_release();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_crash_det);

#endif

 break;

/**/

/* State where fire is detected */

/**/

 case state_detect_fire :

#ifdef DEBUG_TASK_MEASURE

_task_prev_id_fire_det = r2r_start_task(DEBUG_ID_ACCIDENT_FIRE_DETECTION);
#endif

 _state = state_idle;

 check_for_fire();

 scheduler_release();

#ifdef DEBUG_TASK_MEASURE

 r2r_stop_task(_task_prev_id_fire_det);

#endif

 break;

 default: break;

 }

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 36

4.3.3. Execution Time

To ensure that the system can run without any problems the load of the system is measured. This is

done by using a DAC (digital to analogue converter) and measure the execution time and period of

the different tasks as voltage changes using an oscilloscope. The input of the DAC is 4 bit and has a

logic low of 0𝑉 and a logic high of 5𝑉. This results in 16 possible voltage levels (𝑉𝑜𝑢𝑡) and each

voltage step is:

5𝑉

24
= 3.125𝑉

The formula for calculating the voltage level for a specific function is:

𝑉𝑜𝑢𝑡 =
𝑏𝑖𝑡0

16
+

𝑏𝑖𝑡1

8
+

𝑏𝑖𝑡2

4
+

𝑏𝑖𝑡3

2

There are five primary tasks being executed iteratively, when the system is started and running idle.

Each have its own ID to identify them when measuring. The ID is the value passed to the DAC which

results in the following voltage levels:

Tasks Task ID 𝑽𝒐𝒖𝒕
Temperature reading request 10 3.1V

Accelerometer reading request 11 3.4V

Store measurements 12 3.8V

Crash detection 14 4.4V

Fire detection 15 4.7V

Fig. 20. Timing Graph – Main system

Accelerometer request

Temperature request

Fire detection

Crash detection

Store measurements

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 37

The tasks have the following measurements:

Task Execution Period

Temperature reading request 25µs 20ms

Accelerometer reading request 25µs 20ms

Temperature and accelerometer reading 232µs 20ms

Crash detection 771µs 20ms

Fire detection 25µs 8000ms

Although it is obvious from the graph above that the system is not overloaded, it is possible to prove

it using the following equation.

𝑙𝑜𝑎𝑑 =
∑𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑝𝑒𝑟𝑖𝑜𝑑
∙ 100 ⇔ 𝑙𝑜𝑎𝑑 =

(400 ∙ (2 ∙ 25 + 232 + 771) + 25) ∙ 10−6

8
∙ 100 = 5.27%

With a 5.27% load on the system, it is safe to assume the system will not suffer from overloading.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 38

4.4. Communication and GPS

4.4.1. Overview

The procedure for initialising the SIM908 module is very simple. The drive pin is toggled, which starts

up the module. UART0 is set up to communicate with the module, using AT commands.

In order to setup GSM, GPS and GPRS, global interrupts needs to be enabled, as AT commands is sent

through UART, which uses an ISR (Interrupt Service Routine) to handle the reception part of the

communication. Responses are captured via a callback function.

Communication with UART is done through two functions: SIM908_cmd(… , …); which is the UART
tx and _SIM908_callback(…); which is the UART rx.

Examples on communication via UART using AT commands:

Set baud rate:

UART tx: AT+IPR=115200<CR><LF>
UART rx: <CR><LF>OK<CR><LF>

Enable CREG unsolicited result code:
UART tx: AT+CREG=1<CR><LF>
UART rx: <CR><LF>OK<CR><LF>

Get GPS data:
UART tx: AT+CGPSINF=0<CR><LF>
UART rx: <mode>,<longitude>,<latitude>,<altitude>,<UTCtime>,<TTFF>,<num>,<speed>,<course>

 <CR><LF>OK<CR><LF>

Fig. 21. Activity Diagram – SIM908 initialisation and start-up

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 39

4.4.2. Code

This function sends a stream of characters to the UART. If __wait_for_ok flag is set, it will wait for

response before it returns: true if the response is “OK” or false if the response is “ERROR”.

The callback routine from UART has become heavier and heavier as the project expanded.

Sometimes, but not always, the module needs to wait for a response, before it can execute the next

command. This is the reason for the complex function with a wealth of branches. In the following

code snippet the logic is left out. It is simply to show all the different branches depending on the type

of response.

bool SIM908_cmd(const char *__cmd, bool __wait_for_ok)

{

 /* Saves the status register and disables global interrupt */

 uint8_t SREG_cpy = SREG;

 cli();

 _ack_response_flag = _ack_ftp_response_flag = _ack_gps_response_flag =

 SIM908_FLAG_WAITING;

 _rx_response_length = _CR_counter = _LF_counter = 0U;

 uart0_send_string(__cmd);

 uart0_send_char(CR);

 uart0_send_char(LF);

 /* Restore interrupt */

 SREG = SREG_cpy;

 return __wait_for_ok ? _wait_response(&_ack_response_flag, SIM908_FLAG_OK) : true;

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 40

void _SIM908_callback(char data) {

 scheduler_pause();

 /* Mirroring communication from sim908 to uart1 */

 #ifdef DEBUG_UART_ECHO

 uart1_send_char(data);

 #endif

 _rx_response_length++;

 _rx_buffer[_rx_buffer_tail = (_rx_buffer_tail + 1U) % RX_BUFFER_SIZE] = data;

 /* Checking and counting for CR and LF */

 if (data == CR) {

 _CR_counter++;

 } else if (data == LF) {

 _LF_counter++;

 }

 if ((_CR_counter > 0U) && (_LF_counter > 0U)) {

 _CR_counter = _LF_counter = 0U;

 if (_rx_response_length > 2U) { . . . /* Skipping empty lines */

 } else

 if ((_gps_pull_flag == SIM908_FLAG_GPS_PULL) && /* GPS pull */

 (_check_response(SIM908_RESPONSE_GPS_PULL))) { . . .

 } else

 if ((_rx_response_length == 4U) && /* OK */

 (_check_response(SIM908_RESPONSE_OK) == true)) { . . .

 } else

 if ((_rx_response_length == 7U) && /* Error */

 (_check_response(SIM908_RESPONSE_ERROR) == true)) { . . .

 } else

 if (((_rx_response_length == 10U) || /* CREG */

 (_rx_response_length == 12U)) &&

 (_check_response(SIM908_RESPONSE_CREG) == true)) { . . .

 } else

 if ((_rx_response_length == 11U) && /* GPS Ready */

 (_check_response(SIM908_RESPONSE_GPS_READY) == true)) { . . .

 } else

 if ((_system_running_flag == SIM908_FLAG_WAITING) && /* System ready */

 (_rx_response_length == 5U) &&

 (_check_response(SIM908_RESPONSE_RDY) == true)) { . . .

 } else

 if ((_rx_response_length == 4U) && /* Sync AT cmd */

 (_check_response(SIM908_RESPONSE_AT) == true)) { . . .

 } else { . . .

 }

 }

 _rx_response_length = 0U;

 }

 scheduler_resume(false);

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 41

4.4.3. Execution Time

The setup sequence of the SIM908 module is measured using an oscilloscope to get an idea about

how the system behaves in its initial phase. The tasks associated with the setup are:

Task Task ID 𝑽𝒐𝒖𝒕
Start of module 3 0.9V

Send command to module 8 2.5V

Wait for response from module 1 0.3V

Callback from the module 5 1.6V

This graph shows the complete setup procedure of the SIM908 module. This module is setup using

AT commands via UART.

Fig. 22. Timing Graph – SIM908 module setup

As it can be seen in the graph, there are 17 commands executed in the first section of the startup.

Those are:

 Init:

 Set baud rate

 Sync baud rate

 Disable ECHO response

 Enable CREG unsolicited response

 GSM:

 Enable auto answer

 Set full functionality

 Block incoming calls

 GRPS FTP:

 Set connection type to GPRS

 Set APN adr.

 Set user profile

 Set server adr.

 Set port

 Set user name

 Set password

 Set data type to binary

 Set ftp type to storing

 Set file path

Send command to module

Callback from module

Start of module

Wait for response from module

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 42

After these there is a waiting period. This is until “GPS Ready” has been received. When this happens the

GPS is set up:

 GPS power on

 GPS autonomy mode

This completes the setup of the SIM908 module.

4.5. Car Panel

4.5.1. Overview

Besides visualisation of system status and alarm status, the HMI has 3 functionalities; manually

alarm, cancel alarm and reset emergency detection. The cancel alarm, is a routine which is called

whenever an alarm is triggered, regardless of whether it is automatically or manually triggered. The

reset emergency detection can only be executed, when an emergency call has been done.

Fig. 23. Activity Diagram – Car panel

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 43

4.5.2. Code

Time counting is done in busy waiting and not by a timer, as it was indented to block everything

when a button is pushed. Blocking the system led later to a problem in SIM908 communication, as

unsolicited result code were missed. The routine is now implemented as a non-block ISR to resolve

this problem. Code for the alarm button is shown below.

When the counter exceeds the defined button pressed time (3 seconds), it calls the

car_panel_wait_cancel_emmergency(void); routine, which is a function implemented using the

same principle, by busy waiting and counting. It returns a Boolean whether the alarm is cancelled or

not.

ISR (PCINT1_vect, ISR_NOBLOCK)

{

 /* Check if alarm button is pressed */

 if(!(PIN(PORT) & (1<<BTN_ALARM)))

 {

 _car_panel_counter = 0U;

 while ((_car_panel_counter++ < CONFIG_ALARM_BUTTON_PRESS_TIME) &&

 (!(PIN(PORT) & (1<<BTN_ALARM))))

 {

 _delay_ms(100);

 car_panel_set_control(ALARM_WAITING);

 }

 if (_car_panel_counter >= CONFIG_ALARM_BUTTON_PRESS_TIME)

 {

 if (!car_panel_wait_cancel_emmergency())

 {

 EXT_EMERGENCY_FLAG = EMERGENCY_MANUAL_ALARM;

 }

 }

 else

 {

 car_panel_set_control(ALARM_NOT_ACTIVATED);

 }

 }

 /* Check if cancel button is pressed */

 else if (!(PIN(PORT) & (1 << BTN_CANCEL)))

 {

 . . .

 }

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 44

4.6. Emergency Reporting

4.6.1. Overview

When an alarm is triggered, the ad_emergency_alarm(void); routine is called in order to assembly
the information needed for the MSD, into a 140 bytes struct, send it to an FTP server and finally
make a voice call.

Fig. 24. Sequence Diagram – Emergency alarm

The MSD structure is an external variable in which the parameters and structure are predefined (ref.

2.10). Static data is read from the config file, while dynamic data, as time and location, are read and

calculated internal in SIM908 module.

When data is collected and set, the system establishes communication to PSAP. The MSD structure is

sent through GPRS to an FTP and subsequently a voice call to the PSAP is established.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 45

4.6.2. Code

First a routine is called to ensure that the module has a reliable signal to proceed the file transfer.

Next the filename is created with format: YYYY-DD-MM_HH.MM.SS-(__vroom_id).vroom. This code

is left out in the example, but it just simple concatenates the AT command with the time stamp and

vroom ID, which in this system, is the phone number.

void send_MSD(const char *__vroom_id)

{

 _wait_for_connection();

 int8_t _retry_ctr = RETRY_ATTEMPTS;

 char *filename = malloc(60U * sizeof(char));

 . . . Filename concatenation has been left out

 while(!SIM908_cmd(filename, true));

 free(filename);

 _ftp_sending_flag = SIM908_FLAG_FTP_SENDING;

 while ((!SIM908_cmd(AT_FTP_OPEN_BEARER1, true)) && (_retry_ctr-- > 0)) {

 _delay_ms(1000);

 }

 do {

 SIM908_cmd(AT_FTP_PUT_OPEN_SESSION, false);

 } while ((!_wait_response(&_ack_ftp_response_flag, SIM908_FLAG_FTP_PUT_OPEN)) &&

 (_retry_ctr-- > 0));

 do {

 SIM908_cmd(AT_FTP_PUT_FILE_SIZE(CONFIG_FTP_FILE_SIZE), false);

 } while ((!_wait_response(&_ack_ftp_response_flag, SIM908_FLAG_FTP_PUT_SUCCESS)) &&

 (_retry_ctr-- > 0));

 do {

 EXT_MSD.msg_identifier = RETRY_ATTEMPTS - _retry_ctr + 1U;

 uart0_send_data((char*)(&EXT_MSD.version), 1U);

 uart0_send_data((char*)(&EXT_MSD.msg_identifier), 1U);

 uart0_send_data((char*)(&EXT_MSD.control), 1U);

 uart0_send_data((char*)(&EXT_MSD.vehicle_class), 1U);

 uart0_send_data(&EXT_MSD.VIN[0], 20U);

 uart0_send_data((char*)(&EXT_MSD.fuel_type), 1U);

 uart0_send_data((char*)(&EXT_MSD.time_stamp), 4U);

 uart0_send_data((char*)(&EXT_MSD.latitude), 4U);

 uart0_send_data((char*)(&EXT_MSD.longitude), 4U);

 uart0_send_data((char*)(&EXT_MSD.direction), 1U);

 uart0_send_data(&EXT_MSD.optional_data[0], 102U);

 uart0_send_char(CR);

 uart0_send_char(LF);

 } while ((!_wait_response(&_ack_ftp_response_flag, SIM908_FLAG_FTP_PUT_OPEN)) &&

 (_retry_ctr-- > 0));

 _delay_ms(100);

 do {

 SIM908_cmd(AT_FTP_PUT_CLOSE_SESSION, true);

 } while ((!_wait_response(&_ack_ftp_response_flag, SIM908_FLAG_FTP_PUT_CLOSE)) &&

 (_retry_ctr-- > 0));

 while(!SIM908_cmd(AT_FTP_CLOSE_BEARER1, true));

 _ftp_sending_flag = SIM908_FLAG_WAITING;

}

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 46

Finally following AT commands are sent in a sequence using the SIM908_cmd(..., ...); function.

Some of the commands requires the correct response, before it can be executed.

1. Create filename: AT+FTPPUTNAME="<filename>"

Required response: OK

2. Open bearer: AT+SAPBR=1,1

Required response: OK

3. Open FTP PUT session: AT+FTPPUT=1

Required response: OK

+FTPPUT:1,1,1260

4. Set write data: AT+FTPPUT=2,140

Required response: OK

+AT+FTPPUT=2,140

5. Write data: Data is directly written to UART0 and terminated with

 <CR><LF> which automatically closes the PUT session

Required response: OK

+FTPPUT:1,1,1260

6. End write session: AT+FTPPUT=2,0

Required response: OK

+AT+FTPPUT=1,0

7. Close bearer: AT+FTPPUT=0,1

Required response: OK

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 47

4.6.3. Execution Time

This sequence is measured using an oscilloscope to get an idea about how to system behaves when it

is started up. The tasks associated with the emergency reporting are:

Task Task ID 𝑽𝒐𝒖𝒕
Send command to module 8 2.5V

Wait for response from module 1 0.3V

Callback from the module 5 1.6V

This graph shows the complete emergency reporting procedure of the SIM908 module. This module

is setup using AT commands via UART.

Fig. 25. Timing Graph – Emergency reporting

When an alarm triggers, there are 9 commands sent:

 Requesting GPS information containing position, course and UTC time

 Set the filename for the report

 Open the GPRS connection

 Initialise the session with the FTP server

 Send the data

 Close the session with the FTP server

 Close the GPRS connection

 Enable incoming calls

 Call PSAP

After these commands are sent, the system goes into a dormant state. It remains in this dormant

state until the driver has reset emergency detection (ref. 4.5).

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 48

5. Testing

5.1. Testing Tools

5.1.1. Accelerometer Analyser

Purpose

As there was a need to be able to see and analyse accelerometer data, the Accelerometer

Analyser was developed. This was needed to be able to see how a car is affected by forces in

various situations.

Functionalities

This tool has a few, but important functionalities.

 Record live accelerometer data from a serial interface

 Save the recorded data to a file for later analysis

 Display live or recorded data on a graph as acceleration over time

 Display live or recorded data as text

 Display the max acceleration on currently displayed data

 Enable or disable different axis’ or vectors

 Zoom on both the time axis and the acceleration axis, both with mouse scroll and with a

slider

Fig. 26. Accelerometer Analyser – Explained

File menu with

capability to open,

save and print files

Start and stop

recording of data

Controls for the serial

communication

including the option

to send commands

Graphing area

Enabling and disabling

of graphing data

Max total acceleration

Data as text area with

the option to show

and hide the section

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 49

Implementation

The tool is implemented in C# .NET using Winforms API. The way the tool works is that when data

is received from the serial bus, an eventhandler is triggered. This eventhandler stores the data in a

BindingList. This BindingList has its own eventhandler. Hence this can initialise the graphing part

separate from the eventhandler of the serial bus. This enables the tool to be very efficient and be

able to record data at a very high speed, without getting backed up by data. This is due to the fact

that the graphing part runs in a separate thread system from the reading part.

Unfortunately the .NET framework has an overhead issue, which means that data received at a

very high speed at baud rate 115200 bps and higher, is being backed up in the receive buffer and

the system starts to lag behind the actual live data.

Merits

By having this tool, it has been possible to record and analyse own data rather than having to rely

solely on other people’s findings. It has also made it possible to record the exact scenarios which

was deemed necessary for this specific project. However, it has not been possible to use this tool

to test actual crash scenarios as no one would lend us their car, so these data is gathered from

internet research.

5.1.2. SIM908 AT Terminal

Purpose

As no serial terminal, that was available, satisfied all the needs for developing this system, an

alternative was needed.

What was needed was a tool which could display serial ASCII communication with a time stamp.

Functionalities

The functionalities of this tool are very basic. Beside the ASCII communication, the tool also has

some fixed features which are specifically developed for this project.

 Signal strength display and logging

 Connection status command button

 GPS ON/OFF, status, reset and location fix

 Display on map feature for checking the accuracy of the GPS signal

 Change colour and font of the text in the terminal

 Option to save the whole communication as a rich text document for logging

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 50

Fig. 27. SIM908 AT Terminal – Explained

Fig. 28. SIM908 AT Terminal – Map view

Right-Click menu

with option to save

the current

communication log

and change text

font and colour

Command input

field and clear

button

Controls for the serial

communication

Terminal

display area

Connection area with signal

bar and option to log the

signal strength

GPS area with different

functions and the option to

display last received GPS

location on a map

Graph with the logging of

the signal strength. If

double clicked it switches

to the terminal display area

for a more detailed view

Miscellaneous buttons, not

really used

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 51

Implementation

The tool is implemented in C# .NET using Winforms API. The tool works by interpreting the ASCII

communication from the serial connection and then displaying it on the terminal display area. It

has a timed task for the signal that updates every few seconds by sending an AT command. If a

GPS location fix response is received, the coordinates are converted to decimal coordinates and

written in two text boxes for display. The map can then be displayed by clicking on the “Map”

check box. The map is displayed using a browser object and the google maps web site.

Merits

By having this tool it has been easy to log and keep track of what was happening with the system,

as the system has the option to echo all the UART communication to a serial output. It has also

helped a lot in figuring out what commands to run and in which sequence to get the SIM908

module to operate as intended. The map feature has been a good help to make sure GPS accuracy

and calculation between different coordinate systems has been done correctly.

5.1.3. PASP Simulator

Purpose

In order to check and analyse the content of the MSD .VROOM file sent through FTP, a PSAP

Simulator was needed to decode and analyse the data which constitutes the emergency report.

Functionalities

This tool has following key functionalities:

 Structure and order already existing emergency reports

 Automatically notify and updates when a new emergency report is received

 Display the raw data of the MSD .VROOM file by right clicking the file

 Decode the MSD .VROOM file and visualise it in MSD Details window

 Visualise location of the incidents on a map

 Zoom on map by mouse scrolling or double mouse clicking

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 52

Fig. 29. PSAP Simulator – Explained

Implementation

The tool is implemented in C# .NET using Winforms API. A filesystem watcher is implemented in

order to trigger an event when a new file is created. When this eventhandler is triggered the file is

read and the raw data is stored in a list. The item is listed in the MSD Files view and an alarm-

sound will apply, to notify that an event has occurred.

When a file is selected in the MSD Files view an eventhandler for the listbox will decode the MSD

file, display the data in MSD Details view and add the pin to the map, if the position is trusted.

The map is implemented using Bing maps, which is a WPF user control. The component is created

in XAML and hosted in a Winform elementhost. A Bing account is created in order to get a

credential key which is required in order to use Bing maps.

Map layout

Double click

to zoom and

focus on map

Right click to

view raw data

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 53

Merits

Using this tool the MSD files are easily evaluated and analysed. This tool provides a good visual

representation and overview of how the MSD is structured and how it could be presented. It also

demonstrates the importance of getting the exact information about an emergency and how easy

PSAP can determine the necessary response.

5.1.4. Oscilloscope

Purpose

To make sure everything can run on the system without any issue, an oscilloscope was needed to

measure the timing of different parts of the system.

Functionality

The functionality of this tool is to measure voltage over time.

Implementation

Along with the oscilloscope, an R2R ladder D/A converter is built and implemented to be able to

see the different tasks as voltage changes. This way it is possible to see precisely which task is

running at any given time.

Merits

By having this tool it has been possible to confirm and document that the system executes as

expected and that the cyclic scheduling runs exactly as intended, without overloading the system.

5.2. Test Plan and Specification

Test plan (Appendix B) and specification (Appendix C) is prepared for this system. Details of testing types

and procedures is described in order to document and replicate the test results.

Unit testing, module testing and integration testing are all included in the source code. The respective

tests can be executed by defining the context in run.c as ON while other contexts must switched OFF

#define UNIT_TEST ON

#define MODULE_TEST_SENSORS OFF

#define MODULE_TEST_SIM908 OFF

#define MODULE_TEST_CAR_PANEL OFF

#define MODULE_TEST_UART OFF

#define INTEGRATION_TEST_SIM908_SENSORS OFF

/* ** */

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 54

5.2.1. Unit Test

MinUnit framework for unit testing is included in this system. Following functions performs unit

testing:

 calculate_temperature(..., ...); in tc72 driver
 calc_UTC_seconds(...); in time.c

The reason for why the unit test platform is not used for more functions, is that the complexity in this

system is not in the arithmetic, but in the communication.

5.2.2. Module Test

Module test are performed on each modules. Car Panel and Sensor modules are visually tested and

the readings are conducted using the LCD display. Only UART module conforms a validation check for

what is sent and received.

5.2.3. Integration Test

Integration test is performed by testing the modules functionalities and interactions with each other,

then they are integrated. The integration test ends up integrating all the functionalities of the system

and therefor the final program.

5.2.4. Regression Test

Regression testing is conducted whenever a substantial amount of code is changed. This test includes

mainly stability testing as it is the only way to test if everything works.

5.2.5. Stability Test

To ensure the system is stable and reliable, different stability tests have been conducted.

Start-up

Over 500 consecutive start-up tests have been conducted with a successful result.

The objective of this test is to ensure that the system has a successful implementation in the start-up

procedure and that it starts reliably every time.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 55

The test was conducted by repeating the following steps:

1. Power on

2. Wait (random times between 0 minutes and 10 hours)

3. Trigger alarm (randomly chosen between manual, crash automatic and fire automatic)

4. Power off

The precondition for this test is that the system is located a place where a mobile communication

signal is reachable.

Emergency reporting

Two separate tests have been conducted, each sending over 3000 consecutive reports with a 100%

success rate.

The objective of this test is to ensure that the system has a stable and reliable implementation of the

communication system to ensure that whenever an emergency is registered, an MSD will be sent.

The test was conducted by repeating the following step:

1. Send MSD

The precondition for this test is that the system is located a place where a mobile communication

signal is reachable and that one alarm has been triggered.

Long-time run

More than 100 long-time run tests have been conducted. Each varying between 5 minutes and 24

hours, all with successful results.

The objective of this test is to ensure that the system’s cyclic scheduler is implemented in a reliable

and stable way and will not cease functioning after long periods of time.

The tests were conducted by repeating the following steps:

1. Power on

2. Wait (random chosen of the times specified in the test plan: 5 minutes – 2 hours – 24 hours)

3. Trigger alarm (randomly chosen between crash automatic and fire automatic)

4. Power off

The precondition for this test is that the system is located a place where a mobile communication

signal is reachable.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 56

5.2.6. Functionality Test

Functionality tests have been conducted for all aspects for this project.

ECU

This test is conducted alongside the stability testing and has the same success rate (ref. 5.2.5). This

test is conducted according to the test plan section 5.2.1:

Trigger on crash and call for assistance

Type Result Note

Positive PASS Call to PSAP is simulated

Negative PASS

HMI

This test is conducted according to the test plan section 5.2.1:

Manually activate emergency call

Type Result Note

Positive PASS Call to PSAP is simulated

Negative PASS

Cancel a false activation of an emergency call

Type Result Note

Positive PASS

Negative PASS

Notification of the system’s state

Type Result Note

Positive PASS

5.2.7. Not Conducted Tests

Release testing is not conducted. It is, however, included in the test specification and the test plan.

As this project only focuses on making a prototype of the final product, a release test is not possible.

Furthermore, a complete functionality test is not possible as the final HMI design and production is

not done.

However, all technical functionalities have been thoroughly tested (ref. 0)

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 57

6. Result and Discussion
After careful analysis of the system through testing and timing analysis, it is demonstrated that the

system is running as intended. All the required functionalities are implemented and working. However,

this does not mean the system is perfect and without flaws.

6.1. Improvements

MISRA C 2004

This standard, which was to be followed, presented some challenges which were too large to be

resolved in the given time. This means that a few of the rules specified in the MISRA C 2004 standard

are not followed. However, most of the rules are followed and respected.

The rules that are not followed can be found in (Appendix E)

SIM908 Communication

The way the SIM908 communication is implemented turned out to not work as efficiently as it could.

The problem is that as the project grew, more and more responses from the SIM908 module were

required to be received and acknowledged. This meant that the callback function for the module

became larger and larger. This was a problem as this callback function is called directly from the

UART interrupt service routine, so the time it took to check all these different responses meant that

part of other responses (especially the unsolicited ones) were missed.

So this one section could be greatly improved by creating a more elaborate system, however, the

time to change it was not there when the problem became apparent.

One solution can be to have a framework which can support specific send/response combinations so

that whenever a command requires a specific response, a callback function with only that check is

passed to the UART.

Another solution could be to pull data from the UART at certain intervals at the cost of larger

memory consumption and more processing time.

void _SIM908_callback(char data) {

 . . . CODE

if ((_CR_counter > 0U) && (_LF_counter > 0U)) {

 if (_rx_response_length > 2U) { /* Skipping empty lines */

 if ((_ftp_sending_flag == SIM908_FLAG_FTP_SENDING) &&

 (_check_response(SIM908_RESPONSE_FTP_PUT) == true)) {

 . . . CODE

 } else if ((_gps_pull_flag == SIM908_FLAG_GPS_PULL) &&

 (_check_response(SIM908_RESPONSE_GPS_PULL))) { /* GPS pull */

 . . . CODE

 } else if ((_rx_response_length == 4U) &&

 (_check_response(SIM908_RESPONSE_OK) == true)) { /* OK */

 . . . CODE CONTINUES . . .

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 58

6.2. From Prototype to Market

Although this project only focuses on a prototype, thoughts about how to realise it and get it to the

mass market have also been made.

Car Panel

An ideal installation for this interface is intended as a part of the rear-view mirror, as this will

minimise the probability of accidently activating an alarm and make for a seamless integration into

any car. It will also help keep installation costs to a minimum, as it is not a whole new panel that

needs to be installed.

Pricing

A focus group would be a good idea to determine what would be a reasonable price for a product like

this, as the cost of this system is a key selling point.

Hardware

Research which hardware will fit the requirements for the system best will be essential to ensure

optimal quality/price balance.

Production

Research into where the final product can be produced in a good balance between cost and quality.

Even though cost is a selling point, the quality is very important as well, especially in a safety-critical

system like this; human lives are at stake.

Code Certification

The code would have to be certified in order to conform to the standards which are needed to realise

this type of product.

Materials

The right kind of material is needed for the ECU box as it is very important that it is not damaged in a

crash to the extent that it cannot perform the required functionalities. The system need to be

functional regardless of the severity of the crash.

Operational Environment

The system will have to be mounted in a secure location and in a way that the accelerometer is

detecting the forces experienced by the vehicle. This means that it would have to be researched

where to mount it. Furthermore, a backup battery and electronic circuit for delayed off functionality

would also be required in order to ensure that the system would still be functional in the event that

the vehicles power source is compromised.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 59

7. Conclusion
A prototype for a product that automatically calls for help in the event of a car accident have been

presented and documented in this report. The product is suitable for all car makes and models, as it

does not interact with any of the cars components except for the battery.

This is achieved by utilising an accelerometer to determine a crash instead of communicating with the

car’s CANBUS to determine if an airbag is deployed. This is a vast improvement in contrast to other

competing products.

The product also includes a thermometer to detect fire, as well as an option to manually trigger an

alarm. This can greatly decrease the response time of the emergency response and potentially save

lives.

It uses mobile communication, audio as well as data, to notify the emergency services in any given

European country.

Although this is only a prototype, there are not many things that needs to be done in order to realise the

final product and introduce it to the mass market (ref. 0)

A variety of test tools have also been developed in order to enhance the development of the product.

The product itself is developed as an embedded system written in C. It consists of 6166 lines of code and

takes up 14442 bytes of program memory on the MCU.

All of the test tools are written in C# .NET.

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 60

8. Appendices

Appendices are located in the Documentation folder.

Project Description:

…\Documentation\Project Report\Appendices\Appendix A – Project Description.pdf

Test Plan:

…\Documentation\Project Report\Appendices\Appendix B – Test Plan.pdf

Test Specification:

…\Documentation\Project Report\Appendices\Appendix C – Test Specification.pdf

User Guide – Car Panel:

…\Documentation\Project Report\Appendices\Appendix D – User Guide VROOM Car Panel.pdf

Disregarded MISRA C 2004 rules:

…\Documentation\Project Report\Appendices\Appendix E – Disregarded MISRA C rules.pdf

Stability testing reports:

…\Testing and Analysing\Data\Stability Testing\...

Accelerometer analysing data:

…\Testing and Analysing\Data\Accelerometer Analysing\...

Datasheets:

…\Documentation\Hardware\Datasheets\...

PCB – Car Panel:

…\Documentation\Hardware\VROOM Car Panel\...

PCB – R2R ladder DAC:

…\Documentation\Hardware\R2R ladder DAC\...

Source Code – Accelerometer Analyser:

…\Testing and Analysing\Tools\Accelerometer Analyser\...

Source Code – SIM908 AT Terminal:

…\Testing and Analysing\Tools\SIM908 AT Terminal\...

Source Code – PSAP Simulator:

…\Testing and Analysing\Tools\PSAP Simulator\...

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 61

Source Code – System:

 …\Source code\VROOM\...

Memory Map:

 …\Source code\VROOM\MemoryMap.xlsx

Doxygen documentation including changelog:

 …\Documentation\Doxygen\index.html

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 62

9. References
E-Call and HeERO

 ritzau (2014) Om få år ringer bilen selv efter hjælp ved trafikulykke, Available at:

http://jyllands-posten.dk/motor/ECE7262441/Om-f%C3%A5-%C3%A5r-ringer-bilen-

selv-efter-hj%C3%A6lp-ved-trafikulykke/ (Accessed: 2014-12-10).

 Helen Kearns (2013) eCall: automated emergency call for road accidents mandatory in

cars from 2015, Available at: http://europa.eu/rapid/press-release_IP-13-534_en.htm

(Accessed: 2014-12-04).

 HeERO (2014) Frontpage, Available at: http://www.heero-pilot.eu/view/da/home.html

(Accessed: 2014-12-04).

 HeERO (2014) Publications, Available at: http://www.heero-

pilot.eu/view/en/media/publications.html (Accessed: 2014-10-21).

 Jeremy Laukkonen (2014) Advanced Automatic Collision Notification, Available at:

http://cartech.about.com/od/Safety/a/Advanced-Automatic-Collision-Notification.htm

(Accessed: 2014-12-04).

 righttoride.eu (2014) Europe eCall-ing, Available at: http://www.righttoride.eu/eu-e-

call/ (Accessed: 2014-12-10).

 Bilviden.dk (2012) ECALL (Automatisk 112-opkald), Available at:

http://www.bilviden.dk/Sikkerhed/Fremtidens-sikkerhedsudstyr/eCall.aspx (Accessed:

2014-12-10).

 Gediminas VILKAS (2014) Automatisk nødopkald fra biler skal redde liv, Available at:

http://www.europarl.europa.eu/news/da/news-

room/content/20140224IPR36860/html/Automatisk-n%C3%B8dopkald-fra-biler-skal-

redde-liv (Accessed: 2014-12-10).

 B. Rosen (2013) Internet Protocol-based In-Vehicle Emergency Call draft-rosen-ecrit-ecall-

10.txt, Available at: http://tools.ietf.org/html/draft-rosen-ecrit-ecall-10#ref-eCall-MSD

(Accessed: 2014-12-10).

OnStar

 OnStar (2014) Frontpage, Available at:

https://www.onstar.com/us/en/home.html?source=ct (Accessed: 2014-12-04).

 Erik Morsing (2014) Opel får OnStar og 4G forbindelse i bilerne, Available at:

http://media.gm.com/media/dk/da/opel/news.detail.html/content/Pages/news/dk/da

/2014/opel/03-04-on-star.html (Accessed: 2014-12-04).

 Sean Gornstein (2002) OnStar gør det lettere at være bilist, Available at:

http://www.talefod.dk/hvorfor/vis_artikel/onstar-gor-det-lettere-at-vare-bilist/

(Accessed: 2014-12-04).

http://jyllands-posten.dk/motor/ECE7262441/Om-f%C3%A5-%C3%A5r-ringer-bilen-selv-efter-hj%C3%A6lp-ved-trafikulykke/
http://jyllands-posten.dk/motor/ECE7262441/Om-f%C3%A5-%C3%A5r-ringer-bilen-selv-efter-hj%C3%A6lp-ved-trafikulykke/
http://europa.eu/rapid/press-release_IP-13-534_en.htm
http://www.heero-pilot.eu/view/da/home.html
http://www.heero-pilot.eu/view/en/media/publications.html
http://www.heero-pilot.eu/view/en/media/publications.html
http://cartech.about.com/od/Safety/a/Advanced-Automatic-Collision-Notification.htm
http://www.righttoride.eu/eu-e-call/
http://www.righttoride.eu/eu-e-call/
http://www.bilviden.dk/Sikkerhed/Fremtidens-sikkerhedsudstyr/eCall.aspx
http://www.europarl.europa.eu/news/da/news-room/content/20140224IPR36860/html/Automatisk-n%C3%B8dopkald-fra-biler-skal-redde-liv
http://www.europarl.europa.eu/news/da/news-room/content/20140224IPR36860/html/Automatisk-n%C3%B8dopkald-fra-biler-skal-redde-liv
http://www.europarl.europa.eu/news/da/news-room/content/20140224IPR36860/html/Automatisk-n%C3%B8dopkald-fra-biler-skal-redde-liv
http://tools.ietf.org/html/draft-rosen-ecrit-ecall-10#ref-eCall-MSD
https://www.onstar.com/us/en/home.html?source=ct
http://media.gm.com/media/dk/da/opel/news.detail.html/content/Pages/news/dk/da/2014/opel/03-04-on-star.html
http://media.gm.com/media/dk/da/opel/news.detail.html/content/Pages/news/dk/da/2014/opel/03-04-on-star.html
http://www.talefod.dk/hvorfor/vis_artikel/onstar-gor-det-lettere-at-vare-bilist/

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 63

 Jeremy Laukkonen (2014) GM's OnStar Service: How Does It Work?, Available at:

http://cartech.about.com/od/Safety/a/Gms-Onstar-Service-How-Does-It-Work.htm

(Accessed: 2014-12-04).

Airbag

 AA1Car (2014) Air Bags & Crash Sensors, Available at:

http://www.aa1car.com/library/airbag01.htm (Accessed: 2014-12-04).

 CarsDirect (2013) How Does Your Car's Airbag System Work, Available at:

http://www.carsdirect.com/car-safety/how-does-your-cars-airbag-system-work (Accessed:

2014-12-04).

 Sally Dominguez (2010) Deflated expectations, Available at: http://www.drive.com.au/motor-

news/deflated-expectations-20100331-refb.html (Accessed: 2014-12-04).

http://cartech.about.com/od/Safety/a/Gms-Onstar-Service-How-Does-It-Work.htm
http://www.aa1car.com/library/airbag01.htm
http://www.carsdirect.com/car-safety/how-does-your-cars-airbag-system-work
http://www.drive.com.au/motor-news/deflated-expectations-20100331-refb.html
http://www.drive.com.au/motor-news/deflated-expectations-20100331-refb.html

Vroom #16 Bachelor Project
ITHS-BPRI2-A14 Project Report

VIA University College Chr. M. Østergårdsvej 4 12-12-2014
ICT Engineering 8700 Horsens, Denmark 64

10. List of Acronyms
VROOM: Vehicle Remote Observing Organizational Management

VIN: Vehicle Identification Number

GPS: Global Positioning System

GSM: Global System for Mobile Communications

GPRS: General Packet Radio Service

IVS: In-Vehicle System

ECU: Electronic Control Unit

HMI: Human Machine Interaction

MSD: Minimum Set of Data

PSAP: Public-safety answering point

EENA: European emergency number association (Standard)

CEN: The European Committee (Comité Européen de Normalisation)

ISO: International Organization for Standardization

ISR: Interrupt Service Routine

RC: Remote Control

DAC: Digital to Analogue Converter

	Abstract
	1. Introduction
	1.1. Background
	1.2. Summary
	1.3. Problem Formulation
	1.4. Delimitations

	2. Analysis
	2.1. Overall System Architecture
	2.2. UseCase Diagram
	2.3. Actor Descriptions
	2.4. UseCase Descriptions
	2.5. Requirements
	2.5.1. Functional
	2.5.2. Non-functional

	2.6. Overall System Infrastructure
	2.7. Accident Definition
	2.8. Crash Data
	2.9. Voice Communication
	2.10. Data Communication

	3. Design
	3.1. In-Vehicle System (IVS)
	3.2. Electronic Control Unit (ECU)
	3.3. Human Machine Interaction (HMI)
	3.4. Technical Choices
	3.4.1. Hardware decisions
	3.4.2. Software Decisions

	4. Implementation
	4.1. Introduction
	4.1.1. Hardware
	4.1.2. Software
	4.1.3. File Diagram
	4.1.4. Code Structure

	4.2. Start-up and Main Routine
	4.2.1. Overview
	4.2.2. Code

	4.3. Basic Task Scheduling
	4.3.1. Overview
	4.3.2. Code
	4.3.3. Execution Time

	4.4. Communication and GPS
	4.4.1. Overview
	4.4.2. Code
	4.4.3. Execution Time

	4.5. Car Panel
	4.5.1. Overview
	4.5.2. Code

	4.6. Emergency Reporting
	4.6.1. Overview
	4.6.2. Code
	4.6.3. Execution Time

	5. Testing
	5.1. Testing Tools
	5.1.1. Accelerometer Analyser
	Purpose
	Functionalities
	Implementation
	Merits

	5.1.2. SIM908 AT Terminal
	Purpose
	Functionalities
	Implementation
	Merits

	5.1.3. PASP Simulator
	Purpose
	Functionalities
	Implementation
	Merits

	5.1.4. Oscilloscope
	Purpose
	Functionality
	Implementation
	Merits

	5.2. Test Plan and Specification
	5.2.1. Unit Test
	5.2.2. Module Test
	5.2.3. Integration Test
	5.2.4. Regression Test
	5.2.5. Stability Test
	Start-up
	Emergency reporting
	Long-time run

	5.2.6. Functionality Test
	ECU
	HMI

	5.2.7. Not Conducted Tests

	6. Result and Discussion
	6.1. Improvements
	MISRA C 2004
	SIM908 Communication

	6.2. From Prototype to Market
	Car Panel
	Pricing
	Hardware
	Production
	Code Certification
	Materials
	Operational Environment

	7. Conclusion
	8. Appendices
	9. References
	E-Call and HeERO
	OnStar
	Airbag

	10. List of Acronyms

